PRE-CALCULUS SYLLABUS

2013-2014 Academic School-Year

<u>1st Marking Period – Unit 1</u>

Review of Algebra 2 Concepts – 1 Week (Quiz)

Chapter P - Pre-requisites (Quiz)

P-5 Interval Notation

Chapter 1: Functions and Their Graphs (Test 1.1 - 1.3 and Test 1.4 - 1.5)

1.1 Functions

1.2 Graphs of Functions

1.3 Shifting, Reflecting, and Stretching Graphs

1.4 Combinations of Functions

1.5 Inverse Functions

Chapter 2: Polynomial and Rational Functions (Test 2.1 - 2.3)

2.1 Quadratic Functions

2.2 Polynomial Functions of Higher Degree

2.3 Real Zeros of Polynomial Functions

<u>2nd Marking Period – Unit 2</u>

Chapter 2: Polynomial and Rational Functions (Test 2.4 - 2.5)

2.4 Complex Numbers

2.5 The Fundamental Theorem of Algebra

Chapter 2: Polynomial and Rational Functions (Test 2.6 - 2.7)

2.6 Rational Functions and Asymptotes

2.7 Graphs of Rational Functions

Chapter 3: Exponential and Logarithmic Functions (Test 3.1 - 3.4)

3.1 Exponential Functions and Their Graphs

3.2 Logarithmic Functions and Their Graphs

3.3 Properties of Logarithms

3.4 Solving Exponential and Logarithmic Equations

Chapter 4: Trigonometric Function (Test 4.1 - 4.4)

4.1 Radian and Degree Measure

4.2 Trigonometric Functions: The Unit Circle

4.3 Right Triangle Trigonometry

4.4 Trigonometric Functions of Any Angle

<u>3rd Marking Period – Unit 3</u>

Chapter 4: Trigonometric Function (Test 4.5 – 4.6)

4.5 Graphs of Sine and Cosine Functions

4.6 Graphs of Other Trigonometric Functions

Chapter 4: Trigonometric Function (Test 4.7 – 4.8)

4.7 Inverse Trigonometric Functions

4.8 Applications and Models

Chapter 5: Analytic Trigonometry (Test 5.1 - 5.3)

5.1 Using Fundamental Identities

5.2 Verifying Trigonometric Identities

5.3 Solving Trigonometric Equations

<u>4th Marking Period – Units 4 and 5</u>

Chapter 5: Analytic Trigonometry (Test 5.4 – 5.5)

5.4 Sum and Difference Formulas

5.5 Multiple Angle and Product Sum Formulas

Chapter 6: Additional Topics and Trigonometry (Test 6.1 - 6.2 and 6.3 - 6.4)

6.1 Law of Sines

6.2 Law of Cosines

6.3 Vectors in the Plane

6.4 Vectors and Dot Products

Chapter 7: Systems of Equations and Inequalities (Quiz)

7.3 Multivariable Linear Systems (Just Partial Fractions)

Chapter 10: Topics in Analytic Geometry (Test 10.6 – 10.7)

10.6 Polar Coordinates

10.7 Graphs of Polar Equations

Additional Topics as Time Permits

Chapter 12: Limits and Introduction to Calculus

12.1 Introduction to Limits

12.2 Techniques for Evaluating Limits

Course Expectations and Skills

- Students are required to have proficiency in all prerequisite topics for Algebra 1. Those who do not demonstrate proficiency will be required to seek additional help after school to close their achievement gap in order to be successful in this course.
- Students are required to take notes in Cornell Notes format and maintain those notes in a neat and organized notebook.
- Students are required to have a scientific calculator.
- Students are required to participate in both small and large group discussions and activities, as directed.
- Students are required to complete a project each marking period, including those which require the use of technology.

Resources

Text Book:

Precalculus with Limits, A Graphing Approach, Larson

Additional Resources: Kuta Software and Boardworks (CCSS PowerPoints)

Marking Period Grade Distribution by Category

	1st	4th
MAJ	40%	20%
BMK	20%	20%
MIN	20%	20%
EOC	N/A	20%
СР	10%	10%
HW	10%	10%

ENGAGING STUDENTS • FOSTERING ACHIEVEMENT • CULTIVATING 21ST CENTURY GLOBAL SKILLS

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Course/Unit Title:	Unit Summary:	
Pre-Calculus/Unit 1	In this unit, students will learn about functions and their graphs. Students will	
Functions and Their Graphs	be introduced to functions, learn to evaluate functions and find the domain and	
Grade Level(s):	range of functions both algebraically and graphically. Students will learn how	
11/12	to analyze the graphs of functions. They will identify and graph shifts,	
	reflections and non-rigid transformations of functions. Students will learn to	
	find both arithmetic combinations of functions and the composition of	
	functions. Finally, students will find the inverses of functions graphically and	
	algebraically, and determine if the inverse is also a function.	
Essential Question(s):	Enduring Understanding(s):	
 How can students more 	Students will be able to:	
easily represent,	 Decide whether relations between two variables are functions 	
analyze, and quantify	 Use function notation and evaluate functions 	
the relationship	Find the domains of functions	
between functions and	 Use functions to model and solve real-life problems 	
their graphs?	 Find the domains and ranges of functions 	
 How can students use 	Use the Vertical Line Test for functions	
technology to identify	Determine intervals on which functions are increasing or decreasing	
important characteristics of	 Determine relative maximum and relative minimum values of functions 	
functions?	 Identify and graph step functions and other piecewice defined 	
	functions	
	Identify even and odd functions	
	Recognize graphs of common functions	
	 Use vertical and horizontals shifts and reflections to sketch graphs of functions 	
	Use non-rigid transformations to sketch graphs of functions	
	Add, subtract, multiply, and divide functions	
	Find the compositions of one function with another function	
	Use combinations of functions to model and solve real-life problems	
	• Find inverse functions informally and verify that two functions are inverses of each other	
	Use graphs of functions to decide whether functions have inverses	
	Find inverse functions algebraically	

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES

DESCRIBE THE LEARNING TARGETS.

After each target, identify the NJCCCS or Common Core Standards that are applicable

Learning Target	NJCCCS or CCS	
1. For a function that models a relationship between two quantities, interpret key	1. F-IF.4	
features of graphs and tables in terms of the quantities, and sketch graphs showing	2. F-IF.5	

key features given a verbal description of the relationship	3. F-IF.7a
2. Relate the domain of a function to its graph and, where applicable, to the	4. F-IF.7b
quantitative relationship it describes.	5. F-BF.1b
3. Graph linear and quadratic functions and show intercepts, maxima, and minima	6. F-BF.1c
4. Graph square root, cube root, and piecewise-defined functions, including step	7. F-BF.4
functions and absolute value functions.	
5. Combine standard function types using arithmetic operations.	
6. Compose functions.	
7. Find inverse functions	

Inter-Disciplinary Connections:

Real-World problem solving examples:

- Natural phenomena can be modeled by functions, such as the force of water against the face of a dam
- Graphs of functions provide a visual relationship between two variables, such as the graph of a step function can represent the cost of a telephone call
- Graphs of functions can be used to model the amount of fuel used by trucks
- Combinations of functions can be used to analyze US health care expenditures
- Inverse functions can be used to investigate the relationship between the exhaust temperature and the percent load on a diesel engine

Students will engage with the following text:

Precalculus with Limits – A Graphing Approach

Students will write:

Students use Cornell Note taking strategies to reinforce vocabulary, writing, and study skills.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills.

1.1 Functions

* Honors only

Big Ideas

Testing for Functions

Digitaca

Testing for Functions Represented Algebraically

Evaluating a Function

A Piecewise-Defined Function

Finding the Domain of a Function

The Dimensions of a Container

The Path of a Baseball

Direct Mail Advertising

Evaluating a Difference Quotient

1.2 Graphs of Functions

* Honors only

Big Ideas	
Finding the Domain and Range of a Function	
Vertical Line Test for Functions	
Increasing and Decreasing Functions	
Approximating a Relative Minimum	
Approximating Relative Minimums and Maximum	
Bowling Equipment Sales	
Graphing a Piecewise-Defined Function	
Testing for Evenness and Oddness	
Even and Odd Functions	

1.3 Shifting, Reflecting, and Stretching Graphs

* Honors only

Big Ideas
Shifts in the Graph of a Function
Finding Equations from Graphs
Reflections and Shifts
Non-rigid Transformations
Sequences of Non-rigid Transformations

1.4 Combinations of Functions

Big Ideas	
Finding the Sum of Two Functions	
Finding the Difference of Two Functions	
Finding the Product of Two Functions	
Finding the Quotient of Two Functions	
Forming the Composition of f with g	
Compositions of Functions	
Finding the Domain of a Composite Functions	
A Case in Which $f \circ g = g \circ f$	
Identifying a Composite Function	
Bacteria Count	

PART IV: EVIDENCE OF LEARNING IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS. IDENTIFY BLOOM'S LEVELS.

Formative Assessments:

The effectiveness of the instructional program will be based on teacher observations, students doing quality work together, questioning strategies, self and peer assessments, student record-keeping, quizzes, essays, journal writing, performance tasks, diagnostic tests, homework, and projects

Accommodations/Modifications:

Summative Assessments:

Periodic benchmark tests, chapter tests, state assessments, PSATs, End of Course tests, and SATs

Accommodations/Modifications:

Performance Assessments:

Projects, display of student work, and electronic portfolios

ENGAGING STUDENTS • FOSTERING ACHIEVEMENT • CULTIVATING 21ST CENTURY GLOBAL SKILLS

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Pre-Calculus/Unit 2In this unit students will learn about quadratic functions, polynomial functionsPolynomial and Rational Functionsof higher degree, real zeros of polynomial functions, complex numbers, the fundamental theorem of algebra, rational functions and asymptotes and graphsGrade Level(s): 11 and 12of rational functions. They will sketch and analyze graphs of quadratic and polynomial functions. They will use long division and synthetic division to divide polynomials by other functions. They will determine the number of rational and real zeros of polynomial functions and find them. They will perform operations with complex numbers and plot complex numbers in the complex plane. The will determine the domain find asymptotes and sketch
Polynomial and Rational Functionsof higher degree, real zeros of polynomial functions, complex numbers, the fundamental theorem of algebra, rational functions and asymptotes and graphsGrade Level(s): 11 and 12of rational functions. They will sketch and analyze graphs of quadratic and polynomial functions. They will use long division and synthetic division to divide polynomials by other functions. They will determine the number of rational and real zeros of polynomial functions and find them. They will perform operations with complex numbers and plot complex numbers in the complex plane. The will determine the domain find asymptotes and sketch
Functionsfundamental theorem of algebra, rational functions and asymptotes and graphsGrade Level(s): 11 and 12of rational functions. They will sketch and analyze graphs of quadratic and polynomial functions. They will use long division and synthetic division to divide polynomials by other functions. They will determine the number of rational and real zeros of polynomial functions and plot complex numbers in the perform operations with complex numbers and plot complex numbers in the
Grade Level(s): 11 and 12of rational functions. They will sketch and analyze graphs of quadratic and polynomial functions. They will use long division and synthetic division to divide polynomials by other functions. They will determine the number of rational and real zeros of polynomial functions and find them. They will perform operations with complex numbers and plot complex numbers in the complex plane. The will determine the domain find asymptotes, and sketch
11 and 12 polynomial functions. They will use long division and synthetic division to divide polynomials by other functions. They will determine the number of rational and real zeros of polynomial functions and find them. They will perform operations with complex numbers and plot complex numbers in the
divide polynomials by other functions. They will determine the number of rational and real zeros of polynomial functions and find them. They will perform operations with complex numbers and plot complex numbers in the
rational and real zeros of polynomial functions and find them. They will perform operations with complex numbers and plot complex numbers in the semplex plane. The will determine the demain find exymptotes, and sketch
perform operations with complex numbers and plot complex numbers in the
complex plane. The will determine the demain find asymptotes, and sketch
complex plane. The will determine the domain, find asymptotes, and sketch
the graphs of rational functions.
Essential Question(s): Enduring Understanding(s):
What techniques are Students will be able to:
necessary to analyze • Analyze graphs of quadratic functions.
and solve polynomials • Write quadratic functions in standard form and use the results to
algebraically? sketch graphs of functions.
How can polynomial- Use quadratic functions to model and solve real-life problems.
solving skills assist in Use transformations to sketch graphs of polynomial functions.
solving rational • Use the Leading Coefficient Test to determine the end behavior of
equations? graphs of polynomial functions.
 Find and use zeros of polynomial functions to sketch their graphs.
 Use the Intermediate Value Theorem to help locate zeros of
polynomial functions.
 Use long division to divide polynomials by other polynomials.
 Use synthetic divisions to divide polynomials by binomials of the form
(x - k).
 Use the Remainder Theorem and the Factor Theorem.
 Use the Rational Zero Test to determine possible rational zeros of
polynomials functions.
 Determine upper and lower bound for zeros of polynomial functions.
 Use the imaginary unit I to write complex numbers.
 Add, subtract, and multiply complex numbers.
 Use complex conjugates to divide complex numbers.
 Plot complex numbers in the complex plane.
 Use the Fundamental Theorem of Algebra to determine the number of
zeros of polynomial functions
 Find all zeros of polynomial functions, including complex zeros
 Find conjugate pairs of complex zeros
 Find zeros of polynomials by factoring
 Find domains of rational functions
 Find domains of rational relictions. Find horizontals and vertical asymptotes of graphs of rational
functions

	 Use rational functions to model and solve real-life problems. Analyze and sketch graphs of rational functions. Decide whether graphs of rational functions have slant asymptotes. Use rational functions to model and solve real-life problems.
--	--

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

After each target, identify the NJCCCS or Common Core Standards that are applicable

Learnir	g Target	NJCCCS	or CCS
1.	Graph linear and quadratic functions and show intercepts, maxima, and	1.	F-IF.7a
	minima.	2.	F-IF.7c
2.	Graph polynomial functions, identifying zeros when suitable factorizations are	3.	F-IF.7d
	available, and showing end behavior.	4.	F-IF.8a
З.	Graph rational functions, identifying zeros and asymptotes when suitable	5.	A-APR.2
	factorizations are available, and showing end behavior.	6.	N-CN.1
4.	Use the process of factoring and completing the square in a quadratic function	7.	N-CN.2
	to show zeros, extreme values, and symmetry of the graph, and interpret	8.	N-CN.3
	these in terms of a context.	9.	N-CN.4
5.	Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number	10.	N.CN.5
	a, the remainder on division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$ is a	11.	N-CN.7
	factor of p(x).	12.	N-CN.9
6.	Know there is a complex number i such that $i^2 = -1$, and every complex number		
	has the form a + bi with a and b real.		
7.	Use the relation $i^2 = -1$ and the commutative, associative, and distributive		
	properties to add, subtract, and multiply complex numbers.		
8.	Find the conjugate of a complex number; use conjugates to find moduli and		
	quotients of complex numbers.		
9.	Represent complex numbers and their operations on the complex plane.		
10.	Represent addition, subtraction, multiplication, and conjugation of complex		
	numbers geometrically on the complex plane; use properties of this		
	representation for computation.		
11.	Solve quadratic equations with real coefficients that have complex solutions.		
12.	Know the Fundamental Theorem of Algebra; show that it is true for quadratic		
	polynomiais.		

Inter-Disciplinary Connections:

Real-World problem solving examples:

• Quadratic functions can be used to model data to analyze consumer behavior. For instance, Exercise 78

on page 146 shows how a quadratic function can model VCR usage in the United States.

- You can use polynomial functions to model various aspects of nature, such as the growth of a red oak tree, as shown in Exercise 98 on page 158.
- Polynomial division can help your rewrite polynomials that are used to model real-life problems. For instance, Exercise 87 on page 172 shows how polynomial division can be used to model the average monthly rates for cable television in the United States from 1988 through 1997.
- Complex numbers are used to model numerous aspects of the natural world, such as the importance of an electrical circuit, as shown in Exercise 83 on page 181.
- Being able to find zeros of polynomials functions is an important part of modeling real-life problems. For instance, Exercise 65 on page 188 shows how to determine whether a ball thrown with a given velocity can reach a certain height.
- Rational functions are convenient in modeling a wide variety of real-life problems, such as environmental scenarios. For instance, Exercise 31 on page 196 shows how to determine the cost of removing pollutants from a river.

Students will engage with the following text:

Precalculus with Limits: A Graphing Approach Third Edition Larson, Hostetler, Edwards

Students will write:

Students use Cornell Note taking strategies to reinforce vocabulary, writing and study skills.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills.

2.1 Quadratic Functions

* Honors only

Big Ideas

Graphing Simple Quadratic Functions

Identifying the Vertex of a Quadratic Function Writing a Quadratic Function in Standard Form

Finding the Equation of a Parabola in Standard Form

Find the Maximum and Minimum of a Quadratic Function

Use Maximums and Minimums of Quadratic Functions to find height or area

2.2 Polynomial Functions of Higher Degree

* Honors only

Big Ideas

Sketching Transformations of Polynomial Functions

Applying the Leading Coefficient Test

Finding Zeros of a Polynomial Function

Analyzing a Polynomial Function

Finding a Polynomial Function with Given Zeros

Sketching the Graph of a Polynomial Function

Approximating the Zeros of a Function

2.3 Real Zeros of Polynomial Functions

* Honors only

Big IdeasLong Division of PolynomialsUsing Synthetic DivisionUsing the Remainder TheoremFactoring a Polynomial: Repeated DivisionRational Zero Test with Leading Coefficient of 1Using the Rational Zero TestFinding Real Zeros of a Polynomial Function using the Rational Zero Test

2.4 Complex Numbers

* Honors only

Big Ideas	
Adding and Subtracting Complex Numbers	
Multiplying Complex Numbers	
Dividing Complex Numbers	
*Plotting Complex Numbers	
*Members of the Mandelbrot Set	

2.5 The Fundamental Theorem of Algebra

* Honors only

Big Ideas	
Real Zeros and Polynomial Functions	
Real and Complex Zeros of Polynomial Functions	
Finding Zeros of a Polynomial Function	
Finding a Polynomial with Given Zeros	
Factoring a Polynomial	
Finding the Zeros of a Polynomial Function Given One Complex Zero	

2.6 Rational Functions and Asymptotes

	Big Ideas	
	Finding the Domain of a Rational Function	
	Finding Horizontal Asymptotes	
	Finding a Function's Domain and Asymptotes	
	Graph with Two Horizontal Asymptotes	
	*Cost-Benefit Model	
	*Average Cost of Producing a Product	
.7 Grap	7 Graphs of Rational Functions	
Honor	rs only	

 Big Ideas

 Sketching the Graph of a Rational Function by hand

 *Sketching the Graph of a Rational Function with a Slant Asymptote

 *Finding a Minimum Area

PART IV: EVIDENCE OF LEARNING

IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS. IDENTIFY BLOOM'S LEVELS.

Formative Assessments:

The effectiveness of the instructional program will be based on teacher observations, students performing quality work together, questioning strategies, self and peer assessments, student record-keeping, quizzes, essays, journal writing, performance tasks, diagnostic tests, homework, and projects.

Accommodations/Modifications:

Summative Assessments:

Periodic benchmark tests, chapter tests, state assessments, PSATs, End of Course Exam, and SATs.

Performance Assessments:

Projects, display of student work, and electronic portfolios

ENGAGING STUDENTS • FOSTERING ACHIEVEMENT • CULTIVATING 21ST CENTURY GLOBAL SKILLS

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Course/Unit Title:	Unit Summary:		
Pre-Calculus/Unit 3	In this unit, students will learn about exponential and logarithmic functions		
Exponential and Logarithmic	and their graphs. Students will recognize and evaluate and graph both		
Functions	exponential and logarithmic functions. They will rewrite logarithmic functions		
Grade Level(s):	with different bases. Students will learn about the properties of logarithms and		
11/12	use the properties to evaluate, rewrite, expand, or condense logarithmic		
	expressions. Students will learn to solve exponential and logarithmic		
	equations.		
Essential Question(s):	Enduring Understanding(s):		
 How can the properties 	Students will be able to:		
of exponential models	• Recognize and evaluate exponential functions with a base <i>a</i>		
be used to analyze	Graph exponential functions		
situations?	• Recognize, evaluate, and graph exponential functions with base <i>e</i>		
 How can the properties 	 Use exponential functions to model and solve real-life problems 		
of logarithms and	• Recognize and evaluate logarithmic functions with a base <i>a</i>		
exponents be used to	Graph logarithmic functions		
solve equations and	 Recognize, evaluate, and graph natural logarithmic functions 		
analyze situations?	Use logarithmic functions to model and solve real-life problems		
	Rewrite logarithmic functions with different bases		
	Use properties of logarithms to evaluate or rewrite logarithmic expressions		
	Use properties of logarithms to expand or condense logarithmic expressions		
	Use logarithmic functions to model and solve real-life problems		
	Solve simple exponential and logarithmic equations		
	Solve more complicated exponential and equations		
	Solve more complicated logarithmic equations		
	Use exponential and logarithmic equations to model and solve real-life problems		

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES

DESCRIBE THE LEARNING TARGETS.

After each target, identify the NJCCCS or Common Core Standards that are applicable

Learning Target	NJCCCS or CCS	
1. For a function that models a relationship between two quantities, interpret key	1. F-IF.4	
features of graphs and tables in terms of the quantities, and sketch graphs showing	2. F-IF.5	
key features given a verbal description of the relationship	3. F-IF.7e	
2. Relate the domain of a function to its graph and, where applicable, to the	4. F-LE.1	
quantitative relationship it describes. 5. F-LE.1b		
3. Graph exponential and logarithmic functions, showing intercepts and end	6. F-LE.1c	

behavior.	7. F-LE.3
4. Distinguish between situations that can be modeled with linear functions and	8. F-LE.4
with exponential functions.	
5. Recognize situations in which one quantity changes at a constant rate per unit	
interval relative to another.	
6. Recognize situations in which a quantity grows or decays by a constant percent	
rate per unit interval relative to another.	
7. Observe using graphs and tables that a quantity increasing exponentially	
eventually exceeds a quantity increasing linearly, quadratically, or (more generally)	
as a polynomial function.	
8. For exponential models, express as a logarithm the solution to $m{a}m{b}^{ct}=m{d}$ where	
a,c, and d are numbers and the base b is 2, 10, or e ; evaluate the logarithm using	
technology.	

Inter-Disciplinary Connections:

Real-World problem solving examples:

- Exponential functions are useful in modeling data that increase or decrease quickly, such as modeling the amount of defoliation caused by a gypsy moth.
- Logarithmic functions are useful in modeling data that increase or decrease slowly, such as the minimum required ventilation rates in public school classrooms.
- Logarithmic functions can be used to model and solve real-life problems such as human memory.
- Exponential and logarithmic equations can be used to model and solve problems such as using a logarithmic function to model crumple zones for automobile crash tests.

Students will engage with the following text:

Precalculus with Limits – A Graphing Approach

Students will write:

Students use Cornell Note taking strategies to reinforce vocabulary, writing, and study skills.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills.

3.1 Exponential Functions and Their Graphs * Honors only

	Big Ideas
Evaluating Exponential Expressions	
Graphs of $y = a^x$	
Graphs of $y = a^{-x}$	
Transformations of Graphs of Exponential Fu	inctions
Approximation of the Number <i>e</i>	
Evaluating the Natural Exponential Function	
Graphing Natural Exponential Functions	
Finding the Balance for Compound Interest	
Finding Compound Interest	
Radioactive Decay	
Population Growth	

3.2 Logarithmic Functions and Their Graphs

* Honors only

Big Ideas	
Evaluating Logarithms	
Evaluating Logarithms on a Calculator	
Using Properties of Logarithms	
Graphs of Exponential and Logarithmic Functions	
Sketching the Graph of a Logarithmic Function	
Transformations of Graphs of Logarithmic Functions	
Evaluating the Natural Logarithmic Function	
Using Properties of Natural Logarithms	
Finding the Domains of Logarithmic Functions	
*Human Memory Model	

3.3 Properties of Logarithms

* Honors only

3.4 Solving Exponential and Logarithmic Equations

Solving Exponential Equations
Solving an Exponential Equation in Quadratic Form
Solving a Logarithmic Equation
Checking for Extraneous Solutions
The Change-of-Base Formula
Approximating the Solution of an Equation
Doubling an Investment
Consumer Price Index for Sugar

PART IV: EVIDENCE OF LEARNING IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS. IDENTIFY BLOOM'S LEVELS.

Formative Assessments:

The effectiveness of the instructional program will be based on teacher observations, students doing quality work together, questioning strategies, self and peer assessments, student record-keeping, quizzes, essays, journal writing, performance tasks, diagnostic tests, homework, and projects

Accommodations/Modifications:

Summative Assessments:

Periodic benchmark tests, chapter tests, state assessments, PSATs, End of Course tests, and SATs

Accommodations/Modifications:

Performance Assessments:

Projects, display of student work, and electronic portfolios

ENGAGING STUDENTS • FOSTERING ACHIEVEMENT • CULTIVATING 21ST CENTURY GLOBAL SKILLS

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Course/Unit Title:	Unit Summary:	
Pre-Calculus/Unit 4	In this unit students will learn about trigonometric functions. Students will	
Trigonometric Functions	describe an angle and convert between degree and radian measures. Students	
Grade Level(s):	will identify a unit circle and its relationship to real numbers. They will graph	
11 and 12	the sine, cosine, tangent, cosecant, secant and cotangent functions. Students	
	will evaluate trigonometric functions of any angle. Students will use	
	fundamental trigonometric identities. Students will evaluate inverse	
	trigonometric functions. They will evaluate the compositions of trigonometric	
	functions. Finally, they will use trigonometric functions to model and solve	
	real-life problems.	
Essential Question(s):	Enduring Understanding(s):	
 What are the standards 	Students will be able to:	
regarding angles and	Describe angles.	
their measure, and how	Use radian measure.	
are they used?	Use degree measure.	
How can the coordinate	 Convert between radians and degrees. 	
plane be used to	 Use angles to model and solve real-life problems. 	
accurately represent	 Identify a unit circle and its relationship to real numbers. 	
angles and their	 Evaluate trigonometric functions using the unit circle. 	
measure?	• Use the domain and period to evaluate sine and cosine functions.	
What are the properties	 Use a calculator to evaluate trigonometric functions. 	
and identifying aspects	 Evaluate trigonometric functions of acute angles. 	
of the graphs of	Use the fundamental trigonometric identities.	
trigonometric	 Use a calculator to evaluate trigonometric functions. 	
functions?	• Use trigonometric functions to model and solve real-life problems.	
What are the	Evaluate trigonometric functions of any angle.	
relationships between	Use reference angles to evaluate trigonometric functions.	
and their inverses?	 Evaluate trigonometric functions of real numbers. 	
	• Sketch the graphs of basic sine and cosine functions.	
 How can we use trigonometric functions 	• Use amplitude and period to help sketch the graphs of sine and cosine	
and their corresponding	functions.	
definitions to solve real-	Sketch translations of graphs of sine and cosine functions.	
life problems involving	 Use sine and cosine functions to model real-life data. 	
directional bearing and	Sketch the graphs of tangent functions.	
harmonic motion?	Sketch the graphs of cotangent functions.	
	 Sketch the graphs of secant and cosecant functions. 	
	 Sketch the graphs of damped trigonometric functions. 	
	Evaluate inverse sine functions.	
	Evaluate other inverse trigonometric functions.	
	 Evaluate compositions of trigonometric functions. 	
	 Solve real-life problems involving right triangles. 	
	 Solve real-life problems involving directional bearings. 	

Solve real-life problems involving harmonic motion.

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

After each target, identify the NJCCCS or Common Core Standards that are applicable

Learning Target		NJCCCS or CCS	
1.	Know precise definitions of angle, circle, perpendicular line, parallel line, and	1.	G.CO.1
	line segment, based on the undefined notions of point, line, distance along a	2.	G.SRT.8
	line, and distance around a circular arc.	3.	F.BF.1b
2.	Use trigonometric ratios and the Pythagorean Theorem to solve right triangles	4.	F.TF.1
	in applied problems.	5.	F.TF.2
З.	Combine standard function types using arithmetic operations.	6.	F.TF.5
4.	Understand radian measure of an angle as the length of the arc on the unit	7.	F.TF.6
	circle subtended by the angle.	8.	F.TF.7
5.	Explain how the unit circle in the coordinate plane enables the extension of	9.	F.TF.8
	trigonometric functions to all real numbers, interpreted as radian measures of		
	angles traversed counterclockwise around the unit circle.		
6.	Understand that restricting a trigonometric function to a domain on which it is		
	always increasing or always decreasing allows its inverse to be constructed.		
7.	Understand that restricting a trigonometric function to a domain on which it is		
	always increasing or always decreasing allows its inverse to be constructed.		
8.	Use inverse functions to solve trigonometric equations that arise in modeling		
	contexts; evaluate the solutions using technology, and interpret them in terms		
	of the context.		
9.	Prove the Pythagorean identity $sin^{2}(\theta) + cos^{2}(\theta) = 1$ and use it to find $sin(\theta)$,		
	$\cos(\theta)$, or $\tan(\theta)$ given $\sin(\theta)$, $\cos(\theta)$, or $\tan(\theta)$ and the quadrant of the angle.		

Inter-Disciplinary Connections:

Real-World problem solving examples:

- Radian measures of angles can be used to model and solve real-life problems. For instance can determine measures of angles through which figure skaters jump.
- Trigonometric functions are used to model the movement of an oscillating weight. For instance, the displacement from equilibrium of an oscillating weight suspended by a spring is modeled as a function of time.
- Trigonometric functions can approximate the height of a building.

- Trigonometry can be used to model the average daily temperature in a city.
- The sine function can model natural phenomenon.
- The tangent function can be used to model and analyze the distance between a television camera and a parade unit.
- Inverse trigonometric functions can be uses to determine the relationship between the length of rope from a winch to a boat and the angle of elevation between them.
- Trigonometric functions can be used to model and solve bearing problems.
- Trigonometric functions can be used to model and solve problems with simple harmonic motion.

Students will engage with the following text:

Precalculus with Limits: A Graphing Approach Third Edition

Larson, Hostetler, Edwards

Students will write:

Students use Cornell Note taking strategies to reinforce vocabulary, writing and study skills.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills.

- 4.1 Radian and Degree Measure
- * Honors only

Big Ideas
Sketching and Finding Coterminal Angles
Complementary and Supplementary Angles
Converting from Degrees to Radians
Converting from Radians to Degrees
Finding Arc Length
*Finding Linear Speed

4.2 Trigonometric Functions: The Unit Circle

* Honors only

Big Ideas

Evaluating Trigonometric Functions

Using the Period to Evaluate the Sine and Cosine

Using a Calculator to Evaluate the Trigonometric Functions

4.3 Right Triangle Trigonometry

* Honors only

Big Ideas
Evaluating Trigonometric Functions with Exact Values
Evaluating Trigonometric Functions of 45°.
Evaluating Trigonometric Functions of 30° and 60°.
Applying Trigonometric Identities to Solve Equations.
Using Trigonometric Identities to Transform Equations.
Using a Calculator to Evaluate Trigonometric Functions.
Solving Right Triangles.

4.4 Trigonometric Functions of Any Angle

* Honors only

Big Ideas
Evaluating Trigonometric Functions Given a Point
Evaluating Trigonometric Functions Given One Trigonometric Function and a Quadrant
Evaluating Trigonometric Functions of Quadrant Angles
Finding Reference Angles
Evaluating Trigonometric Functions of Non-acute Angles
Using Trigonometric Identities to Evaluate
Using a Calculator to Evaluate Non-acute Angles

4.5 Graphs of Sine and Cosine Functions

* Honors only

Big Ideas
Using Key Points to Sketch A Sine Curve
Scaling: Vertical Shrinking and Stretching
Scaling: Horizontal Stretching
Horizontal Translation
Vertical Translation
Finding an Equation for a Graph
*Finding a Trigonometric Model

4.6 Graphs of Other Trigonometric Functions

Big Ideas
Sketching the Graph of a Tangent Function
Sketching the Graph of a Tangent Function Using Translations
Sketching the Graph of a Cotangent Function
Comparing Trigonometric Graphs of Sine and Cosecant
Comparing Trigonometric Graphs of Cosine and Secant
*Analyzing a Damped Sine Curve

4.7 Inverse Trigonometric Functions

* Honors only

Big Ideas

Evaluating the Inverse Sine Function Graphing the Arcsine Function Evaluating Inverse Trigonometric Functions Using Calculators for Inverse Trigonometric Functions Using Inverse Properties

Evaluating Compositions of Functions

4.8 Applications and Models

* Honors only

Big Ideas
Solving a Right Triangle
Finding the Side of a Right Triangle
Finding an Angle of Depression or an Angle of Elevation
*Finding Directions in Terms of Bearings
*Writing the Equation for the Simple Harmonic Motion of a Ball

PART IV: EVIDENCE OF LEARNING

IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS. IDENTIFY BLOOM'S LEVELS.

Formative Assessments:

The effectiveness of the instructional program will be based on teacher observations, students performing quality work together, questioning strategies, self and peer assessments, student record-keeping, quizzes, essays, journal writing, performance tasks, diagnostic tests, homework, and projects.

Accommodations/Modifications:

Summative Assessments:

Periodic benchmark tests, chapter tests, state assessments, PSATs, End of Course Exam, and SATs.

Accommodations/Modifications:

Performance Assessments:

Projects, display of student work, and electronic portfolios

ENGAGING STUDENTS • FOSTERING ACHIEVEMENT • CULTIVATING 21ST CENTURY GLOBAL SKILLS

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Course/Unit Title:	Unit Summary:
Pre-Calculus/Unit 5 Analytic	In this unit, student will learn to use fundamental trigonometric identities to
Trigonometry	evaluate trigonometric functions and simplify trigonometric expressions.
Grade Level(s):	Students will learn to verify trigonometric identities. They will use standard
11/12	algebraic techniques and inverse trigonometric functions to solve trigonometric
-	equations. Students will learn to use sum and difference formulas, power-
	reducing formulas, half-angle formulas, and product-sum formulas to rewrite
	and evaluate trigonometric functions.
Essential Question(s):	Enduring Understanding(s):
 How can trigonometric 	Students will be able to:
identities assist in	 Recognize and write fundamental trigonometric identities.
solving trigonometric	Use fundamental trigonometric identities to evaluate trigonometric
equations and verifying	functions, simplify trigonometric expressions, and rewrite
unknown identities?	trigonometric expressions.
 How can trigonometric 	Verify trigonometric identities.
values of angles that	• Use standard algebraic techniques to solve trigonometric equations.
are not "special angles"	Solve trigonometric equations of quadratic type.
be found analytically?	Solve trigonometric equations involving multiple angles.
 How can trigonometric 	• Use inverse trigonometric functions to solve trigonometric equations.
functions be used to	• Use sum and difference formulas to evaluate trigonometric functions.
analyze properties of	• Use sum and difference formulas to verify identities and solve
triangles?	trigonometric equations.
	Use multiple-angle formulas to rewrite and evaluate trigonometric
	functions.
	• Use power-reducing formulas to rewrite and evaluate trigonometric
	functions.
	Use half-angle formulas to rewrite and evaluate trigonometric
	functions.
	Use product-sum formulas to rewrite and evaluate trigonometric
	functions.

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES

DESCRIBE THE LEARNING TARGETS.

After each target, identify the NJCCCS or Common Core Standards that are applicable

Learni	ng Target	NJCCCS or CCS
1.	Prove the Pythagorean identity $sin^2 heta+cos^2 heta=1$ and use it to calculate	1. F-TF.8
	trigonometric ratios.	2. F-TF.9
2.	Prove the addition and subtraction formulas for sine, cosine, and tangent	
	and use them to solve problems.	

Inter-Disciplinary Connections:

Real-World problem solving examples:

- Fundamental trigonometric identities can be used to simplify an expression for the rate of change of a function.
- Trigonometric identities can be used to solve a problem about the coefficient of friction for an object on an inclined plane
- Solving a trigonometric equation can help answer questions about the position of the sun.
- The sum and difference formulas can be used to rewrite a trigonometric expression in a form that helps find the equation of a standing wave.
- The half-angle formula can be used to determine the apex angle of a sound wave cone from the speed of an airplane.

Students will engage with the following text:

Precalculus with Limits – A Graphing Approach

Students will write:

Students use Cornell Note taking strategies to reinforce vocabulary, writing, and study skills.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills.

5.1 Using Fundamental Identities

* Honors only

Big Ideas
Using Identities to Evaluate a Function
Simplifying a Trigonometric Expression
Verifying Trigonometric Identities
Factoring Trigonometric Expressions
Simplifying Trigonometric Expression
Rewriting Trigonometric Expression
Trigonometric Substitution

5.2 Verifying Trigonometric Identities

Big Ideas
Verifying a Trigonometric Identity
Combining Fractions Before Using Identities
Verifying a Trigonometric Identity
Converting to Sines and Cosines
Verifying a Trigonometric Identity
Working with Each Side Separately
*Three Example from Calculus

5.3 Solving Trigonometric Equations

* Honors only

Big Ideas
Solving a Trigonometric Equation
Collecting Like Terms
Extracting Square Roots
Factoring
Factoring an Equation of Quadratic Type
Rewriting with a Single Trigonometric Function
Squaring and Converting to Quadratic Type
*Functions of Multiple Angles
Using Inverse Functions
Approximating Solutions
*Surface Area of a Honeycomb

5.4 Sum and Difference Formulas

* Honors only

5.5 Multiple-Angle and Product-Sum Formulas

Big Ideas
Solving a Multiple-Angle Equation
Using Double-Angle Formulas in Sketching Graphs
Evaluating Functions Involving Double Angles
*Deriving a Triple-Angle Formula
*Reducing a Power
Using a Half-Angle Formula

Solving a Trigonometric Equation
*Writing Products as Sums
*Using a Sum-to-Product Formula
Solving a Trigonometric Equation
Verifying a Trigonometric Identity

PART IV: EVIDENCE OF LEARNING IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS. IDENTIFY BLOOM'S LEVELS.

Formative Assessments:

The effectiveness of the instructional program will be based on teacher observations, students doing quality work together, questioning strategies, self and peer assessments, student record-keeping, quizzes, essays, journal writing, performance tasks, diagnostic tests, homework, and projects

Accommodations/Modifications:

Summative Assessments:

Periodic benchmark tests, chapter tests, state assessments, PSATs, End of Course tests, and SATs

Accommodations/Modifications:

Performance Assessments:

Projects, display of student work, and electronic portfolios

ENGAGING STUDENTS • FOSTERING ACHIEVEMENT • CULTIVATING 21ST CENTURY GLOBAL SKILLS

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Course/Unit Title:	Unit Summary:
Pre-Calculus/Unit 6	In this unit students will learn about the Law of Sines and the Law of Cosines.
Additional Topics in	The Law of Sines and Cosines will be used to solve oblique triangles. Students
Trigonometry	will learn how to find areas of oblique triangles. They will represent vectors as
Grade Level(s):	directed line segments and perform mathematical operation of vectors.
11 and 12	Students will find direction angles for vectors and find the dot product of two
	vectors and use properties of the dot product.
Essential Question(s):	Enduring Understanding(s):
 How can trigonometric 	Students will be able to:
functions be used to	 Use the Law of Sines to solve oblique triangles given AAS, ASA or SSA.
analyze properties of	Find areas of oblique triangles.
triangles?	• Use the Law of Sines to model and solve real-life problems.
How can vector	• Use the Law of Cosines to solve oblique triangles given SSS or SAS.
quantities be accurately	• Use the Law of Cosines to model and solve real-life problems.
represented and	• Use Heron's Area Formula to find areas of triangles.
manipulated?	Represent vectors as directed line segments.
	Write the component form of vectors.
	 Perform basic vector operations and represent vectors graphically.
	 Write vectors as linear combinations of unit vectors.
	 Use vectors to model and solve real-life problems.
	 Find the dot product of two vectors and use properties of dot product
	Find angles between vectors
	 Determine whether two vectors are orthogonal
	Write vectors as sums of two vector components
	Vince vectors as sums of two vector components.
	Use vector to find the work done by force.

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

After each target, identify the NJCCCS or Common Core Standards that are applicable

Learning Target	NJCCCS or CCS
1. Apply trigonometry to general triangles	1. G-SRT.D
2. Understand and apply the LAW OF SINES and the Law of Cosines to find	2. G-SRT.11
unknown measurements in right and non-right triangles (e.g., surveying	3. F-TF.3
problems, resultant forces).	4. F-TF.6
3. Use special triangles to determine geometrically the values of sine, cosine,	5. F-TF.8
tangent for $\P/3$, $\P/4$ and $\P/6$, and use the unit circle to express the values of	6. F-FT.9
sine, cosine, and tangent for ¶-x, ¶+x, and 2¶-x in terms of their values for x,	7. N-VM.1
where x is any real number.	8. N-VM.2
4. Understand that restricting a trigonometric function to a domain on which it is	9. N-VM.3

	always increasing or always decreasing allows its inverse to be constructed.	10. N-VM.4a
5.	Prove the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) = 1$ and use it to find	11. N-VM.4b
	sin(theta), cos(theta), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant	12. N-VM.4c
	of the angle.	
6.	Prove the addition and subtraction formulas for sine, cosine, and tangent and	
	use them to solve problems.	
7.	Recognize vector quantities as having both magnitude and direction.	
	Represent vector quantities by directed line segments, and use appropriate	
	symbols for vectors and their magnitudes (e.g., v, v , v , v).	
8.	Find the components of a vector by subtracting the coordinates of an initial	
	point from the coordinates of a terminal point.	
9.	Solve problems involving velocity and other quantities that can be represented	
	by vectors.	
10.	Add vectors end-to-end, component-wise, and by the parallelogram rule.	
	Understand that the magnitude of a sum of two vectors is typically not the	
	sum of the magnitudes.	
11.	Given two vectors in magnitude and direction form, determine the magnitude	
	and direction of their sum.	
12.	Understand vector subtraction $v - w$ as $v + (-w)$, where -w is the additive	
	inverse of w, with the same magnitude as w and pointing in the opposite	
	direction. Represent vector subtraction graphically by connecting the tips in	
	the appropriate order, and perform vector subtraction component-wise.	

Inter-Disciplinary Connections:

Real-World problem solving examples:

- Law of Sines can be uses to solve real-life problems involving oblique triangles. For instance exercise 35 on page 435 shows how the Law of Sines can be used to help determine the distance from a ranger station to a forest fire.
- Law of Cosines can be used to solve real-life problems involving oblique triangle. For instance, exercise 32 on page 442 shows how the Law of Cosines can be used to approximate the number of feet a baseball player must run to catch a ball.
- Vectors are used to analyze numerous aspects of everyday life. Exercise 78 on page 455 shows how vectors can determine the tension in the cables of two cranes lifting an object.
- Dot product of two vectors can be used to find the force necessary to deep a truck from rolling down a hill.

Students will engage with the following text:

PreCalculus with Limits: A Graphing Approach Third Edition Larson, Hostetler, Edwards

Students will write:

Students use Cornell Note taking strategies to reinforce vocabulary, writing and study skills.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills.

6.1 Law of Sines

* Honors only

Big Ideas

Given Two Angles and the Non-Included Side: Solve an Oblique Triangle

Given Two Angles and the Included Side: Solve an Oblique Triangle

Single Solution for the SSA Case

No Solution for the SSA Case

Two Solutions for the SSA Case

Finding the Area of an Oblique Triangle

*Using the Law of Sines Given Bearings

*Apply Law of Sines to Find Distances and Angles in Oblique Triangles that Occur in The Real World

6.2 Law of Cosines

* Honors only

Big Ideas
Given Three Sides: Solve the Oblique Triangle
Given Two Sides and the Included Angle: Solve the Oblique Triangle
Apply Law of Cosine to Real-Life Situations
Using Heron's Area Formula Find the Area of a Triangular Region

6.3 Vectors in the Plane

6.4 Vectors and Dot Product

* Honors only

Big Ideas

Finding Dot ProductsUsing Properties of Dot ProductsDot Products and LengthFinding the Angle Between Two VectorsDetermining Orthogonal VectorsDecomposing a Vector into ComponentsFinding a ForceFinding Work

PART IV: EVIDENCE OF LEARNING IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS. IDENTIFY BLOOM'S LEVELS.

Creating Evaluating Analyzing Applying Understanding Remembering

Formative Assessments:

The effectiveness of the instructional program will be based on teacher observations, students performing quality work together, questioning strategies, self and peer assessments, student record-keeping, quizzes, essays, journal writing, performance tasks, diagnostic tests, homework, and projects.

Accommodations/Modifications:

Summative Assessments:

Periodic benchmark tests, chapter tests, state assessments, PSATs, End of Course Exam, and SATs.

Accommodations/Modifications:

Performance Assessments:

Projects, display of student work, and electronic portfolios

ENGAGING STUDENTS • FOSTERING ACHIEVEMENT • CULTIVATING 21ST CENTURY GLOBAL SKILLS

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Course/Unit Title:	Unit Summary:
Pre-Calculus/Unit 7	In this unit, student will learn to use fundamental trigonometric identities to
Grade Level(s):	evaluate trigonometric functions and simplify trigonometric expressions.
11/12	Students will learn to verify trigonometric identities. They will use standard
	algebraic techniques and inverse trigonometric functions to solve trigonometric
	equations. Students will learn to use sum and difference formulas, power-
	reducing formulas, half-angle formulas, and product-sum formulas to rewrite
	and evaluate trigonometric functions.
Essential Question(s):	Enduring Understanding(s):
 How can trigonometric 	Students will be able to:
identities assist in	Recognize and write fundamental trigonometric identities.
solving trigonometric	Use fundamental trigonometric identities to evaluate trigonometric
equations and verifying	functions, simplify trigonometric expressions, and rewrite
unknown identities?	trigonometric expressions.
 How can trigonometric 	Verify trigonometric identities.
values of angles that	• Use standard algebraic techniques to solve trigonometric equations.
are not "special angles"	Solve trigonometric equations of quadratic type.
be found analytically?	Solve trigonometric equations involving multiple angles.
 How can trigonometric 	• Use inverse trigonometric functions to solve trigonometric equations.
functions be used to	• Use sum and difference formulas to evaluate trigonometric functions.
analyze properties of	Use sum and difference formulas to verify identities and solve
triangles?	trigonometric equations.
	Use multiple-angle formulas to rewrite and evaluate trigonometric
	functions.
	• Use power-reducing formulas to rewrite and evaluate trigonometric
	functions.
	Use half-angle formulas to rewrite and evaluate trigonometric
	functions.
	Use product-sum formulas to rewrite and evaluate trigonometric
	functions.

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES

DESCRIBE THE LEARNING TARGETS.

After each target, identify the NJCCCS or Common Core Standards that are applicable

Learning Target		NJCCCS or CCS
1.	Prove the Pythagorean identity $sin^2 heta+cos^2 heta=1$ and use it to calculate	1. F-TF.8
	trigonometric ratios.	2. F-TF.9
2.	Prove the addition and subtraction formulas for sine, cosine, and tangent	
	and use them to solve problems.	

Inter-Disciplinary Connections:

Real-World problem solving examples:

- Fundamental trigonometric identities can be used to simplify an expression for the rate of change of a function.
- Trigonometric identities can be used to solve a problem about the coefficient of friction for an object on an inclined plane
- Solving a trigonometric equation can help answer questions about the position of the sun.
- The sum and difference formulas can be used to rewrite a trigonometric expression in a form that helps find the equation of a standing wave.
- The half-angle formula can be used to determine the apex angle of a sound wave cone from the speed of an airplane.

Students will engage with the following text:

Precalculus with Limits – A Graphing Approach

Students will write:

Students use Cornell Note taking strategies to reinforce vocabulary, writing, and study skills.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills.

5.1 Using Fundamental Identities

* Honors only

Big Ideas
Using Identities to Evaluate a Function
Simplifying a Trigonometric Expression
Verifying Trigonometric Identities
Factoring Trigonometric Expressions
Simplifying Trigonometric Expression
Rewriting Trigonometric Expression
Trigonometric Substitution

5.2 Verifying Trigonometric Identities

Big Ideas
Verifying a Trigonometric Identity
Combining Fractions Before Using Identities
Verifying a Trigonometric Identity
Converting to Sines and Cosines
Verifying a Trigonometric Identity
Working with Each Side Separately
Three Example from Calculus

5.3 Solving Trigonometric Equations

* Honors only

Big Ideas
Solving a Trigonometric Equation
Collecting Like Terms
Extracting Square Roots
Factoring
Factoring an Equation of Quadratic Type
Rewriting with a Single Trigonometric Function
Squaring and Converting to Quadratic Type
Functions of Multiple Angles
Using Inverse Functions
Approximating Solutions
Surface Area of a Honeycomb

5.4 Sum and Difference Formulas

* Honors only

5.5 Multiple-Angle and Product-Sum Formulas

Big Ideas		
Solving a Multiple-Angle Equation		
Using Double-Angle Formulas in Sketching Graphs		
Evaluating Functions Involving Double Angles		
Deriving a Triple-Angle Formula		
Reducing a Power		
Using a Half-Angle Formula		

-	Solving a Trigonometric Equation
	Writing Products as Sums
	Using a Sum-to-Product Formula
	Solving a Trigonometric Equation
	Verifying a Trigonometric Identity

PART IV: EVIDENCE OF LEARNING IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS. IDENTIFY BLOOM'S LEVELS.

Formative Assessments:

The effectiveness of the instructional program will be based on teacher observations, students doing quality work together, questioning strategies, self and peer assessments, student record-keeping, quizzes, essays, journal writing, performance tasks, diagnostic tests, homework, and projects

Accommodations/Modifications:

Summative Assessments:

Periodic benchmark tests, chapter tests, state assessments, PSATs, End of Course tests, and SATs

Accommodations/Modifications:

Performance Assessments:

Projects, display of student work, and electronic portfolios

ENGAGING STUDENTS • FOSTERING ACHIEVEMENT • CULTIVATING 21ST CENTURY GLOBAL SKILLS

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Course/Unit Title:	Unit Summary:		
Pre-Calculus/Unit 10	In this unit students will learn rewrite sets of parametric equations as		
Topics in Analytic Geometry	rectangular equations and find sets of parametric equations for graphs.		
Grade Level(s):	Students will write equations in polar form and graph polar equations.		
11 and 12	Students will recognize special polar graphs.		
Essential Question(s):	Enduring Understanding(s):		
How can we rewrite	Students will be able to:		
sets of parametric	Evaluate sets of parametric equations for given values of the		
equations as single	parameter.		
rectangular equations?	• Graph curves that re represented by sets of parametric equations.		
What are the basic	Rewrite sets of parametric equations as single rectangular equations		
components and	by eliminating the parameter.		
attributes of the polar	 Find sets of parametric equations for graphs. 		
coordinate plane?	Plot points and find multiple representations of points in the polar		
 How can polar and 	coordinate system.		
rectangular equations	 Convert points from rectangular to polar form and vice versa. 		
be interchanged in	 Convert equations from rectangular to polar form and vice versa. 		
order to more	Graph polar equations by point plotting.		
efficiently analyze given	• Use symmetry, zeros, and maximum r-values as graphing aids.		
situations?	Recognize special polar graphs.		

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

After each target, identify the NJCCCS or Common Core Standards that are applicable

Learning Target			NJCCCS or CCS		
1.	Analyze functions using different representations	1.	F-IF.C		
2.	Graph functions expressed symbolically and show key features of the graph, by	2.	F-IF.7		
	hand in simple cases and using technology for more complicated cases.	3.	F-TF.1		
З.	Understand radian measure of an angle as the length of the arc on the unit	4.	F-TF.2		
	circle subtended by the angle.	5.	F-TF.4		
4.	Explain how the unit circle in the coordinate plane enables the extension of				
	trigonometric functions to all real numbers, interpreted as radian measures of				
	angles traversed counterclockwise around the unit circle.				
5.	Use the unit circle to explain symmetry (odd and even) and periodicity of				
	trigonometric functions.				

Inter-Disciplinary Connections:

Real-World problem solving examples:

- Parametric equations are useful for modeling the path of an object. For instance, in exercise 59 on page 738, a set of parametric equation is used to model the path of a baseball.
- Polar coordinates offer a different mathematical perspective on graphing. In exercises 5 12 on page 743, you see that a polar coordinate can be written in more than one way.
- Several common figures, such as the circle in exercise 3 on page 752, are easier to graph in polar coordinate system than in the rectangular coordinate system

Students will engage with the following text:

Precalculus with Limits: A Graphing Approach Third Edition Larson, Hostetler, Edwards

Students will write:

Students use Cornell Note taking strategies to reinforce vocabulary, writing and study skills.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills.

10.5 Parametric Equation

* Honors only

Big Ideas		
Using a Graphing Utility in Parametric Mode		
Eliminating the Parameter		
Finding Parametric Equations for a Given Graph		

10.6 Polar Coordinates

* Honors only

Big Ideas		
Plotting Point in the Polar Coordinate System		
Multiple Representation of Points		
Polar-to-Rectangular Conversion		
Rectangular-to-Polar Conversion		
Converting Polar Equations to Rectangular Form		
Converting Rectangular Equations to Polar Form		

10.7 Graphs of Polar Equations

* Honors only

	Big Ideas
Graphing a Polar Equation by Point Plotting	
*Using Symmetry to Sketch a Polar Graph	
*Finding Maximum r-Values of a Polar Graph	
*Analyzing a Polar Graph	
*Analyzing a Rose Curve	
*Analyzing a Lemniscate	

PART IV: EVIDENCE OF LEARNING IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS. IDENTIFY BLOOM'S LEVELS.

Formative Assessments:

The effectiveness of the instructional program will be based on teacher observations, students performing quality work together, questioning strategies, self and peer assessments, student record-keeping, quizzes, essays, journal writing, performance tasks, diagnostic tests, homework, and projects.

Accommodations/Modifications:

Summative Assessments:

Periodic benchmark tests, chapter tests, state assessments, PSATs, End of Course Exam, and SATs.

Accommodations/Modifications:

Performance Assessments:

Projects, display of student work, and electronic portfolios